
Propositional Proof Complexity
COMP 532

Nicholas Hayek

Lectures by Prof. Robert Robere

contents

I Introduction 1

Motivations 1

Propositional Logic Definitions 2

II Resolution 4

Pigeonhole Principle 8

III Frege Systems 19

Extended Frege 22

Peano Arithmetic 27

IV Cutting Planes 30

Rank & Depth Lower Bounds 30

V Algebraic Systems 31

Nullstellensatz 31

© Nicholas Hayek 2025 Q

mailto:nicholas.hayek@mail.mcgill.ca

1 introduction

I Introduction
motivations

A proof may be...

1. A logical argument, deducing statements from assumptions by deduction
rules.

2. A certificate of knowledge about something.

3. A counterexample.

4. Affirmative example.

5. An algorithm.

6. An infinite list of affirmative examples (if it can be verified... i.e. have a
finite representation, i.e. countable).

7. Social consensus and trust?

A proof should always be verifiable and finitely represented.

♠Examples♣ e.g. 1.1

The following are theorems:

Eg 1: Finite Simple Groups classifies all finite simple groups into a small set of
categories. The full proof of this took about 100 years, and is about 10,000 pages.
Why do we trust it? Eh. It probably is OK. The monster group!

Eg 2: 4 Color Theorem states that all planar graphs are 4-colorable. Proof is
computer-assisted. Lots of case analysis.

Eg 3: Boolean Pythagorean Triples asks whether it is possible to 2-color (i.e. choose
a subset of) the natural numbers such that no pythagorean triple is monochro-
matic. This happens to be false. The proof was 200T long. {1, ..., 7824} does have
a coloring, but {1, ..., 7825} does not.

We don’t just want to know if something is true, but come to an understanding
about why a claim is true.

1.1 Gödel Completeness

Every tautology in first order logic has a finite, deductive proof.

propositional proof complexity 2

This says nothing, however, about the length of the proof. Quantitative bounds
suggest something doubly exponential of the number of symbols in the tautol-
ogy.

1.2 Gödel Incompleteness

There exists a first order statement ϕG in the language of arithmetic which
is true, but for which no peano arithmetic proof exists.

The Main Question

Is there a propositional proof system P such that every tautology has a "short"
proof in P ? We need to define the underlined terms.

A proposition proof system P is an algorithm that takes two strings F and Π as input.
Then, ∀F encoding a boolean formula, F is a tautology ⇐⇒ ∃ a proof Π such
that P (F,Π) = 1. Furthermore, P is a polynomial-time, computable algorithm.

We think of P as the verification of the proof Π for F.

A proof system P is polynomially bounded if, for every tautology F, there is a proof
Π of F of length |Π| = |F|n.

The Main Question, Restated

Is there a polynomially bounded proof system?

1.3 Cook-Reckhow

The Main Question ⇐⇒ NP = coNP.

The Cook-Reckhow "Program" says: assume proof systems are not polynomially
bounded, and build up a toolkit to attack NP vs coNP.

propositional logic definitions

Some syntax:

def 1.1 We have atoms, 0 and 1, which mean false and true, as well as variables a, b, ..., z.

We have connectives ¬ (not) as well as ∨ (or) and ∧ (and).

We have formulas. Any atom is a formula. If F is a formula, then so is ¬F. And if
F, G are formulas, then (F ∧ G), (F ∨ G) are formulas.

Some semantics:

def 1.2 A truth assignment τ is a mapping {atoms} 7→ {0, 1} such that τ(0) = 0 and τ(1) = 1.
Let F be a formula:

3 introduction

1. If F = G ∨ H , then τ(F) = 1 if τ(G) = 1 or τ(H) = 1, and 0 otherwise.

2. If F = G ∧ H , then τ(F) = 1 if τ(G) = 1 and τ(H) = 1, and 0 otherwise.

3. If F = ¬G, then τ(F) = 1 ⇐⇒ τ(G) = 0.

Syntactic equality is denoted by =syn. For example, (F ∨ G) ∨ H ,syn F ∨ (G ∨ H),
even though they are semantically the same.

def 1.3We say that τ satisfies F if τ(F) = 1, and falsifies it otherwise. We say that F is
satisfiable if there is a satisfying assignment τ . We say that F is a tautology if every
assignment satisfies it.

def 1.4The size of a formula F is the number of atoms and connectives in it, and denoted
|F|.

def 1.5A literal is either a variable or a negation of an variable.

def 1.6A clause is a disjunction of literals without repeated literals. For example, x ∨ ¬y
and ¬x. ⊥ denotes the empty clause (False).

def 1.7The width of a clause is the number of literals in it.

def 1.8A disjunction is an "or" of literals. A conjunction is an "and" of literals.

def 1.9A formula F is in CNF (conjunctive normal form) if it is a conjunction of clauses.

def 1.10A formula F is in DNF (disjunctive normal form) if it is an or of ands of literals
(i.e. a disjunction of conjunctions of literals).

def 1.11If a formula F depends on variables x1, ..., xn, we write F(x1, ..., xn).

def 1.12If F and G are formulas, we write F ⊨ G if, for every truth assignment τ , τ(F) =
1 =⇒ τ(G) = 1.

def 1.13If F(x1, ..., xn) is a formula, the truth function is the function F : {0,1}n → {0,1}
such that F(x⃗) = 1 ⇐⇒ the truth assignment τ corresponding to x⃗ has τ(F) = 1.

def 1.14A propositional proof system is a polynomial-time algorithm P which takes F and Π

as inputs, such that F encodes a tautology ⇐⇒ ∃ a proof Π such that P (F,Π) = 1
(i.e. accepts).

Equivalently, we could have said "¬F a contradiction" instead of "F a tautology."

propositional proof complexity 4

II Resolution
Let C ∨ x and D ∨ ¬x be clauses which are both true. Let C, D be clauses. Then
either C is true or D is true. In better notation:

C ∨ x ⇓ 1 D ∨ ¬x ⇓ 1
C ∨ D ⇓ 1

(we omit ⇓ 1)

def 2.1 Let F(x1, ..., xn) be a CNF formula and let C be a clause. A resolution proof of C
from F is a sequence of clauses D1, ..., Dm = C. Each clause Di is either a clause
from F or is deduced from earlier clauses in the sequence by one of two rules:

1.
C ∨ x D ∨ ¬x

C ∨ D
(resolution)

2.
C

C ∨ D
(weakening)

The proof is called a refutation of F if C = ⊥.

♠Examples♣e.g. 2.1

Eg 1: Let F = x1 ∧ (¬x1 ∨ x2)∧ (¬x2 ∨ x3)∧¬x3. Notice that this is not satisfiable.
If F is true, we deduce the following

1. ¬x3(∨⊥)

2. ¬x2 ∨ x3

3. ¬x2 (by resolution on 1 and 2)

4. ¬x1 ∨ x2

5. ¬x1 (by resolution on 3 and 4)

6. x1

7. ⊥ (by resolution, we can see x1 ¬x1
⊥)

¬x3 ¬x2 ∨ x3

¬x2 ¬x1 ∨ x2

¬x1 x1

⊥

5 resolution

Eg 2: Let INDn = Fn(x1, ..., xn) = x1∧(¬x1∨x2)∧(¬x2∨x3)∧ ...∧(¬xn−1∨xn)∧¬xn.
The proof (refutation) of this would have size 2n = O(n), depth n = O(n), and
width 2, using resolution as above.

Eg 3: (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2) := CT2

x1 ∨ x2 x1 ∨ ¬x2 ¬x1 ∨ x2 ¬x1 ∨ ¬x2

x2 ¬x2

⊥

def 2.2Let Π be a resolution refutation (as in Example 1.2). Then S(Π), the size, denotes
the number of clauses in Π. w(Π), the width, denotes the maximum width of a
clause in Π. Lastly, d(Π), the depth, denotes the length of the longest path in the
graph associated with Π from a clause of F to the final clause.

def 2.3For Π, SRes, wRes, dRes denote the minimum of these parameters over all resolution
refutations.

prop 2.1Resolution is a propositional proof system.

proof.1. (Completeness) For all unsatisfiable F, there is Π such that P (F,Π) = 1.

2. (Soundness) If there is a Π such that P (F,Π) = 1, then F is unsatisfiable.

3. P is polynomial-time.
We tackle (2) first. In shorthand, F ⊢Res ⊥ =⇒ F ⊨ ⊥. Some case analysis:

1. ⊥ ∈ F. Then we are done, since F is a CNF.

2. ⊥ < F. We prove that the resolution rules are sound (i.e. preserve truth
assignments), and the result follows by induction. Suppose τ satisfies
C ∨ x and D ∨¬x. Then τ must set one of x or ¬x to 0, so τ must satisfy
C or D, respectively.

def 2.4For n ≥ 1, CTn, the complete tautology, denotes the unsatisfiable CNF formula
on variables {x1, ..., xn} with all possible width-n clauses on these variables with
distinct literals.

prop 2.2Resolution is (refutationally) complete. In other words, if F is an unsatisfiable
CNF, then there is a resolution refutation of F. The refutation Π has S(Π) =
O(2n), d(Π) = n + 1, w(Π) = n, where n is the number of variables in F.

proof.

propositional proof complexity 6

We’ll do this naively by trying all truth assignments, and vertifying that F
always evaluates to 0. However, we need to write this in the language of
resolution proofs.

CTn has 2n clauses, and its refutation has size O(2n), depth n, and width n.

To show this last, we proceed by induction. For n = 1, we have x1∧¬x1 =⇒ ⊥.
Let CTn−1 have a refutation Π. Let Π1 be obtained by adding xn to all clauses
in Π. Let Π0 be obtained by adding ¬xn to all clauses in Π. Then Π1 is a proof
of xn from CTn−1 ∪ {xn} (an abuse of notation, but forgive it). Similarly, Π0 is
a proof of ¬xn. Then CTn = (CTn−1 ∪ {xn}) ∪ (CTn−1 ∪ {¬xn}), and we resolve
xn,¬xn =⇒ ⊥. The size, depth, and widths follow easily by induction.

Returning to the original question, let F = C1 ∧ ... ∧ Cm be a conjunction
of clauses. For every clause C of CTn, there is a clause C′ in F such that
C′ ⊆ C. Suppose toward contradiction. Let C ∈ CTn be such a clause. Then
F is satisfiable, since the assignment which falsifies C is going to satisfy all
clauses of F. For further verification, note that every clause C′ in F is not
contained in C, so C′ must have a literal L occurring with the opposite sign
as in C.

Now, to refute F, we derive from F each clause of CTn using one weakening
step. This increases the length of the CTn refutation by 2n and increases the
depth by 1.

def 2.5 A resolution proof is said to be tree-like or dag-like if its graph is a tree or dag,
respectivelyA dag is a directed graph

with no directed cycles.
. As before, STreeRes, wTreeRes, dTreeRes of Π denote the minimal S, w, d

over all resolution refutations of Π.

prop 2.3 STreeRes ⪈ SRes, wTreeRes = wRes, and dTreeRes = dRes.

proof. Every tree-like proof of Π is also a resolution proof, so automatically STreeRes ≥
SRes, wTreeRes ≥ wRes, and dTreeRes ≥ dRes. We can turn a resolution proof into
a tree-like proof by re-computing all necessary clauses when they need to be
reused. This tree-like proof will have the same width, so wTreeRes ≤ wRes =⇒
wTreeRes = wRes. The depth will also remain constant (when a clause that has
already been computed is needed at level d, its computation will take ≤ d − 1
levels; hence, we can compute it in parallel without increasing depth).

What is easy and what is hard for (tree) resolution, where "easy" means there
exists a polynomial-size refutation nO(1), where n = S(Π)? We saw previously
x1 ∧ (¬x1 ∨ x2) ∧ ... ∧ (¬xn−1 ∨ xn) ∧ ¬xn, which has a proof of size O(n), width 2,
and depth O(n) (though one can get this down to O(log(n))).

def 2.6 Let ∆h denote the pyramid graph of height h. peb∆h is a CNF with variables xu

7 resolution

for every u ∈ V (∆h) and its clauses are as follows: ¬xu if u is the root and

xu ∨
∨

v∈δ−(u)

¬xv ∀u ∈ V (∆h)

otherwise.
1⃝

2⃝ 3⃝

4⃝ 5⃝ 6⃝

= ∆3

prop 2.4peb∆h may be refuted by resolution.

proof.We prove by induction on the level i that all notes are true. For i = 1 it is
given. Let u be any node in level i with predecessors v, w. Then xv and xw
are true, by induction, and hence resolve

xu ∨ ¬xv ∨ ¬xw xv
xu ∨ ¬xw

→ xu ∨ ¬xw xw
xu

Hence, for i = h, we find that xh,¬xh =⇒ ⊥. By examining the proof, each
literal xu may be derived using at most 2 inference rules, plus one more for
the ⊥ contradiction. Hence, the length is ≤ 2N + 1 = O(N), where N = h(h+1)

2 ,
the number of total nodes. The depth of this proof is O(h). The width of the
widest clause is 3, so the width is 3.

The proof above is not tree-like, since we have repeated use of nodes. However,
there is a tree-like proof for peb of length O(N), depth O(N), and width O(h).

prop 2.5Any resolution refutation Π of peb∆h requires d(Π)w(Π) ≥ n.

proof.Out of the scope of this course.

def 2.7Let G be a tree-like resolution with a unique sink node r. The formula pebG is
defined with variables xu as before, with clauses ¬xr for r and

xu ∨
∨

v∈δ−(u)

¬xv ∀u ∈ V (G)

otherwise.

propositional proof complexity 8

pigeonhole principle

Recall the pigeonhole principle: if n + 1 pigeons must fit inside n holes, at least
one hole must contain at least 2 pigeons.

For m > n, let phpmn be the following formula: we use variables xij for i = 1, ..., m
and j = 1, ..., n, the truth of each meaning "pigeon i goes to hole j."

We assert that, for fixed i = 1, ..., m ≥ n + 1,

n∨
j=1

xij i.e. each pigeon has a hole

We also assert that ¬xij ∨ ¬xkj∀k , i∀j, i.e. each pigeonhole contains at most one
pigeon. It has been shown that any refutation of phpn+1

n requires size 2Ω(n).

def 2.8 Let f : {0,1}n → S be a function. A decision tree T computing f is a rooted,
labeled, binary tree in which every leaf l is labeled with an element of S, every
internal node is labeled with an input xi , and the two outgoing edges from each
node are labeled with 0 and 1.

For example, we have the following for x1 XOR x2, denoted x1 ⊕ x2.

x1

x2 x2

0 1 1 0

0 1

0 1 0 1

T computes f if, for each input x ∈ {0,1}n, the leaf of T reached by the path
consistent with x is labeled f (x).

Recall x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3 and consider its resolution tree:

⊥
¬x3 x3

¬x2 ∨ x3 x2

¬x1 ∨ x2 x1

We can generate an associated decision tree based on the variable being resolved

9 resolution

in each step:

x3

¬x3 x2

¬x2 ∨ x3 x1

¬x1 ∨ x2 x1

1 0

1 0

1 0

Each leaf gives us the falsified clause given a truth assignment!

def 2.9If F = C1 ∧ ... ∧ Cm is an unsatisfiable CNF on variables x1, ..., xn, define

S(F) ⊆ {0, 1}n × [m]

by (x⃗, i) ∈ S(F) ⇐⇒ Ci(x⃗) = 0. Since F is unsatisfiable, ∀x⃗,∃i : (x, i) ∈ S(F). A property sometimes called
"totality"

2.1 Tree-Like Resolution by Decision Trees

Any size s, depth d treelike resolution refutation for F implies a size ≤ s,
depth ≤ d decision tree solving S(F) (and vice-versa).

A decision tree algorithm "solving" S(F) does the following: given an input
x⃗ ⊆ {0, 1}n for F on n variables, output a clause in F that is falsified by x⃗.

proof.Let F(x1, ..., xn) = C1 ∧ ...∧Cm be an unsatisfiable CNF, and let Π be a treelike
resolution refutation. Let s = S(Π) and d = d(Π). Given this proof, we’d like
a solution to the problem S(F), i.e. given a truth assignment x⃗, which clause
Ci is falsified by it? The following algorithm solves this problem:
Require: x ∈ {0, 1}n, ρ = �,Π
Ensure: ρ, a truth assignment and u, a clause in F falsified by ρ
u ← ⊥ ∈ Π ▷ We expect the invariant ρ(u) = 0
while u not a leaf do

if u derived from weakening then
u ← child of u

else if u derived from resolution on xi then
u ← child falsified by ρ
b← query xi
ρ← ρ ∪ {xi = b}

else
Something went wrong!

output ρ

propositional proof complexity 10

The depth of the tree is the maximum number of queries it needs to make on
any input. We make ≤ d queries on any input, since we make one query for
each resolution along the path.

Each state of the algorithm corresponds to a unique clause in the proof. Hence,
the size of the tree is at most the size of the proof.

Let T be a decision tree solving S(F). Let ℓ be a path in the tree to a node π.

If π is a node, we abuse notation and use π to denote the unique assignment
along the path from the root to π. If π′ is a leaf, there is a clause of F which
is falsified by ℓ. (Generated by the algorithm above).

If ρ is a partial truth assignment, then denote by Cρ is the maximal clause
falsified by ρ (by width). For example, if ρ = {x1 = 1, x3 = 0, x7 = 1}, then
Cρ = ¬x1 ∨ x3 ∨ ¬x7.

For every node π in the decision tree, we’ll show how to derive Cπ from F by
induction.

Base Case: π is a leaf. To derive Cπ, we can weaken some clause in F (specially,
any clause falsified by π, generated by the algorithm).

Induction: If π is an internal node querying x with children π0, π1, Cπ0
=

Cπ ∨ x and Cπ1
= Cπ ∨ ¬x. These can be resolved to get Cπ.

2.2 phpn+1
n Tree-Like Proof

There is a tree-like resolution proof of phpn+1
n of size 2O(n log(n)).

proof.

We give a decision tree solving S(phpn+1
n) given an assignment of pigeons

to holes. We would like to find either (a) a hole with two pigeons, or (b) a
pigeon not mapped to a hole.
Require: xij ∈ {0, 1} ∀i = 1, ..., n + 1; j = 1, ..., n
for i = 1, ..., n + 1 do

for j = 1, ..., n do
query(xij)
if xij = 1 then

Break
if pigeon i not mapped then

output
∨n
j=1 xij

else if pigeon i collides with pigeon k < i in hole j then

11 resolution

output ¬xij ∨ ¬xkj

The depth of this tree, generated by the algorithm, is O(n2). To prove its size, we
have S(Tk+1) ≤ nS(Tk)+k+1 and S(T2) = O(1), where Tk+1 is the tree resolution for
phpn+1

k . Then, S(Tn) = 2O(n log(n)). It has been shown that SRes(phpn+1
n) = 2Ω(n).

def 2.10Let x ∈ {0, 1}k , ⟨x⟩ =
∑ k

i=12k−ixi .
For example, if x = 1010,
then ⟨x⟩ = 10. In this case, to
assert ⟨x⟩ = 10, we have

=⇐⇒ x1 ∧ ¬x2 ∧ x3 ∧ ¬x4

,⇐⇒ ¬x1 ∨ x2 ∨ ¬x3 ∨ x4

The bit pigeonhole principle bphpn (for simplicity,
n = 2k) is defined on variables x⃗1, ..., ⃗xn+1, where x⃗i = xi1 · · · xik . In this context, x⃗i
encodes the ith pigeon that is held in hole ⟨x⃗i⟩. We want to assert the following:

∀i , j ∈ {1, ..., n + 1}, ℓ ∈ {0, ..., 2k − 1}, [⟨x⃗i⟩ , ℓ] ∨ [⟨x⃗j⟩ , ℓ]

i.e. we assert that any given hole contains at most 1 pigeon. As a logical formula,∧
i,j∈[n+1]
ℓ∈[0,n−1]

[x⃗i , ℓ] ∨ [x⃗j , ℓ] = bphpn

2.3 Tree-Like Depth of bphpn

Let n = 2k . A tree-like resolution refutation of bphpn requires depth Ω(n).

proof.

Let T be a decision tree solving S(bphpn). We show that T must make ≥ n
queries on some input x ∈ {0, 1}(n+1)k . Each query in T is to a variable xij for
i ∈ [n + 1], j ∈ [k]. The idea is to move pigeons in as efficiently as possible,
only running into a problem at the very end.

Let ρ be a partial assignment to the variables of bphpn. Initially, ρ = �. Let
P (ρ) = {i ∈ [n + 1] : ∃j : xij ∈ dom(ρ)}, where dom(ρ) denotes the set of
pigeons fixed by ρ (the domain of M).

We want to maintain the following invariant on the algorithm below: there is
always some matching M of P (ρ) to holes consistent with ρ. Before execution,
the invariant is true, as ρ = � has a matching M = � that is consistent.

In an algorithm, consider the next variable xij queried by T . Before it is
queried, we have a partial assignment ρ and matching M which is consistent.

Case 1: xik was already queried for some k , j. Hence {xik = b} ⊆ ρ. In
this case, pigeon i is already mapped to some hole h ∈ {0,1}k. We respond
with hj ∈ {0,1} that is consistent. Hence, ρ = ρ ∪ {xij = hj}, and M = M is
maintained. Our invariant is maintained.

Case 2: xij is the first bit of x⃗i to be queried. As long as P (ρ) < n, there is an
available hole h that does not contain any pigeon inM. Hence,M = M∪{(i, h)}
and ρ = ρ ∪ {xij = hj}. Again, our invariant is maintained.

propositional proof complexity 12

We can maintain this algorithm at least n times, while |M | ≤ n

Note that the depth bound dRes(phpn+1
n) ≥ n is pretty trivial, since each clause is∨n

j=1 xij , which has n variables.

We just proved that a tree-like proof of bphpn has a (≥ n) long path. Can we
extend this idea to a size lower bound?

A matching from [n + 1] → [n] is encoded by M : [n + 1] → [n] ∪ {⋆}, where ⋆
denotes a partial function. Then dom(M) = {i : M(i) , ⋆} = M−1([n]).

We say that xij is forced by M if M(i) , ⋆, or M(i) = ∗ and all holes consistent
with xij = b are filled by other pigeons in M. We’ll arrange such that the second
condition never happens.

2.4 Tree-Like Size of bphpn

Let n = 2k . Any tree-like resolution refutation of bphpn has size at least(3
2

) n
4

= 2Ω(n)

proof.

This proof is sometimes called the "bottleneck counting method."

We sample a random node at depth Ω(n), and prove that the probability of
sampling any particular node is small (say 1

c). Since we always output some
node, but the probability of sampling that node is small, there must be many
nodes (say c).
Require: M : M(i) = ⋆ ∀i

Require: ρ = �

Require: v = root of the decision tree T for S(bphpn)
while |dom(M)| < n

4 do
xij ← variable queried by v
if i is forced by M then

xij ← the forced value b
ρ← ρ ∪ {xij = b}

else
pick a random avalible hole h
M(i)← h
ρ← ρ ∪ {xj = hj}
update v

output v
Let V be the set of all nodes than can be outputted by the algorithm. We’ll

13 resolution

show that the probability P(v) ≤
(

3
2

) −n
4 for v ∈ V . The probability P(∃) that

there is a node v ∈ V is 1. Hence

P(∃) ≤ |V |P(v) = |V |
(3

2

) −n
4

=⇒ |V | ≥
(3

2

) n
4

To show this, let v ∈ V , and consider the unique path from the root to v in the
decision tree. There are ≤ n

4 random assignments of pigeons to holes along
this path, and all other variables are forced.

Let xi1j1 , xi2j2 , ..., xil ,jl be these unforced variables, and let b1, ..., bl be the bits
assigned to these.

Each particular matching occurs with probability 1
n(n−1)···(n−l+1) , but many of

these matchings are consistent with the bit pattern.

def 2.11A deterministic adversary is an algorithm that constructs a "bad input" for a tree T ,
which helps prove depth bounds by generating a long path. (See the following
example):

⋆

• •

• •

• •

• •

• ⊥

However, for well-filled trees, a randomized adversary allows us to prove size
bounds (e.g. with probability p we select node n of depth at least ≥ d).

prop 2.6STreeRes(F) ≤ O(2dRes(F))

proof.Binary trees of depth d have O(2d) nodes.

prop 2.7SRes(F) = O(nwRes+1)

proof.There are
(n
w

)
2w ways of constructing a width w clause. Then, if w = wRes(F),

propositional proof complexity 14

there are at most

w∑
i=0

2i
(
n
i

)
≤

w∑
i=0

2ini = O((2n)w) = O(nw+1)

clauses in a proof of F.

def 2.12 A Prover-Adversary Game is a "decision tree with forgetting." In algorithmic-speak,
we have
Require: C = C1 ∧ · · · ∧ Cm, ρ : {0, 1}n → {0, 1, ⋆}
while ρ doesn’t falsify F do

prover picks a variable xi s.t. ρ(xi) = ⋆
adversary responds with b ∈ {0, 1}
ρ← ρ ∪ {xi = b}
prover chooses S ⊆ ρ−1({0, 1})
for all xi ∈ S do

ρ(xi)← ⋆

def 2.13 The width of a prover strategy is the maximum number of bits that the prover
needs to remember before the game ends. (Against any delayer).

⊥

x4 ¬x4

¬x3 ∨ x4 x3 ¬x3 ∨ x4

¬x2 ∨ x3 x2

x1 ¬x1 ∨ ¬x2 ∨ x3

↓
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ 1

⋆ ⋆ 1 0 ⋆ ⋆ 0 ⋆ ⋆ ⋆ 1 1

⋆ 1 0 ⋆ ⋆ 0 0 ⋆

0 1 0 ⋆ 1 1 0 ⋆

x4=0 x4=1

x3=1 x3=0 x3=0 x3=1

x2=1 x2=0

x1=0 x1=1

15 resolution

2.5 Prover Strategy Completeness

If there is a resolution refutation of F of size s, depth d, and width w, then
there is a prover strategy that wins against any adversary with the (at most)
the same parameters.

Conversely, if there is a prover strategy with parameters s, d, w, then there is
a resolution proof of F with (at most) twice the same parameters.

proof.

(=⇒) We simulate the decision tree argument fromThm 2.1, but forget any
variable that is not needed to falsify a clause.

(⇐=) We work bottom-up from a prover strategy by induction. Let Cp be the
widest clause falsified by ρ : x⃗→ {0, 1, ⋆}. If ρ is a state in a prover strategy,
we can derive Cρ from F in resolution. Hence, ρ = �, for which Cρ = ⊥, may
be derived from F in resolution.

Base case: a game-terminating assignment ρ falsifies a clause C in F. But we
forget all variables not required to falsify C, so C = Cρ.

Let ρ have predecessors σ1, σ2. Assume Cσ1
and Cσ2

can be derived in res-
olution. Then, ρ generates its predecessors by querying a variable x and
forgetting a set S of assignments. wlog let x ∈ Cσ1

,¬x ∈ Cσ2
. Then, we

resolve Cσ1
and Cσ2

to yield C ⊆ Cρ. We then obtain Cρ by weakening.

2.6 Width of bphpn
wRes(bphpn) ≥ n

proof.

This adds to the theorems Thm 2.3 and Thm 2.4 in showing lower bounds on
proofs of bphpn, except now we allow for dag-like (i.e. forgetting) proofs.

Fix a prover strategy P with width d ≤ n − 1. We desire a delayer strategy
which will force the game to never end. Recall that, in the bit pigeonhole
principle, the game ends when it witnesses a collision of pigeons, i.e.∧

i,j∈[n+1]
ℓ∈[0,n−1]

[x⃗i , ℓ] ∨ [x⃗j , ℓ] = bphpn

Let P (ρ) denote the number of distinct pigeons in the fixed bits of a truth
assignment ρ. We wish to maintain ρ such that if P (ρ) ≤ d ≤ n − 1, then there
exists ρ∗ extending ρ such that ρ∗ encodes a valid matching of d pigeons to
distinct holes. This is true initially, where ρ = �.

propositional proof complexity 16

Require: ρ which satisfies invariant.
Ensure: A response to a delayer ρ which satisfies invariant.
prover picks xij ∈ ρ−1(⋆)
if i not assigned by ρ∗ then

Select a hole to assign pigeon i to that does not contain a pigeon in ρ∗.
ρ← ρ ∪ j th bit of this hole.

else
Output consistent with ρ∗’s assignment, i.e.
ρ← ρ ∪ ρ∗(xij)

Hence, the prover strategy must have width ≥ n.

def 2.14 b̃phpn := bphpn ◦ xor(x, y), where

xor(x, y) = (x ∨ y) ∧ (x ∨ y) = (x ∧ y) ∨ (x ∧ y)

For example, if F = z1 ∨ z2, then

F ◦ xor(x, y) = [(x1 ∨ y1) ∧ (x1 ∨ y1)] ∨ ¬[(x2 ∨ y2) ∧ (x2 ∨ y2)]

2.7 Size of bphpn
SRes(bphpn) ≥ 2Ω(n)

proof.

Let n = 2k − 1 and N = nk. Consider the following distribution D on a partial
assignment ρ:
for i = 1, ..., N do

Flip a coin
if heads then

xi ← 0 or 1 with probability P = 1
2

if tails then
yi ← 0 or 1 with probability P = 1

2
Let ρ ∈ D. We observe the following facts:

Fact 1 b̃phpn ↾ ρ, i.e. restricted to the truth assignment, is bphpn with some
variables negated, say bphp′n. Note that wRes(bphp′n) = wRes(bphpn)
also.

Fact 2 P[C ↾ ρ , 1] ≤
(

3
4

) t
2 , where C is a width ≥ t clause over the variables of

b̃phpn.

As a proof: let C = ℓ1 ∨ · · · ∨ ℓs : s ≥ t. Then ℓi = xi , yi , xi , or yi .
Hence, P[ℓi ↾ ρ = 1] = 1

4 , so P(ℓi ↾ ρ , 1) = 3
4 . Since we sample ℓi

17 resolution

independently, and would like ℓi , 1 ∀i = 1, ..., s, we have

P[C ↾ ρ , 1] =
s∏
i=1

P(ℓi ↾ ρ , 1) ≤
(3

4

) s
2
≤

(3
4

) t
2

Now, let Π be a proof of b̃phpn. We extract a proof of bphpn with width
≤ 3 log(|Π|). Sample ρ ∼ D and restrict all clauses in Π with ρ. Fact 1 above
says that Π ↾ ρ is a proof of bphp′n. If Πt is the set of clauses in Π with width
≥ t, then

P = P(∃C ∈ Πt : C ↾ ρ , 1) ≤ |Π|P[C ↾ ρ , 1] ≤ |Π|
(3

4

) t
2

Then the probability of interest P < 1 ⇐⇒ |Π| <
(

4
3

) t
2 , which can accomplish

for any sufficiently large t. But, heuristically, if P < 1, then certainty there
exists an assignment ρ for which C ↾ ρ = 1 ∀C ∈ Πt. Hence, with this
assignment, all ≥ t clauses in the proof of b̃phpn ↾ ρ disappear. But b̃phpn ↾
ρ is bphpn with some variables negated, and so we yield a width < t proof of
this. But we know that wRes(bphpn) ≥ n, so t ≥ n.

2.8 Size-Width Bounds

STreeRes(F) ≥ 2wRes(F)−w(F)

SRes(F) ≥ 2
Ω

(
(wRes(F)−w(F))2

n

)

These bounds imply that it is insufficient to bound S(Tree)Res by wRes alone: one
needs w(F) as well. To illisutrate the distinction, consider a refutation of

F = (x1 ∨ · · · ∨ xn) ∧ ¬x1 ∧ · · · ∧ ¬xn

w(F) = wRes = n, but we have a relatively short proof (of size n).

We discuss the intuition behind a proof first. Consider a tree-like refutation of
F, Π. As its penultimate step, we resolve a variable x with ¬x. Hence, we derive
both x and ¬x from sub-tree refutations Π0 and Π1, respectively.

⊥

x ¬x

Π1 Π0

propositional proof complexity 18

The proof Π0 ↾ (x = 1) proves F ↾ (x = 1), and similarly Π1 ↾ (x = 0) proves
(resolution-refutationally) F ↾ (x = 0). But what is F ↾ (x = b)? If F = C1 ∧ · · · ∧
Cn, then restricting by (x = 1) will disappear all appearances of ¬x in Ci , and
disappear entire clauses Cj which contain x. Hence, F ↾ (x = 1) is the same as F
with all clauses resolved on by x.

Let x be derived from F by Π1. Then, resolve x on all clauses in F used by Π0.
From here, we use Π0 ↾ (x = 1) to yield ⊥. We continue this process to obtain
(hopefully), an upper bound on wRes − w by the size of the proof.

proof. wlog let |Π| = 2ℓ be a tree-like proof of F. Then by Prop 2.8 and Prop 2.9,
we conclude

wRes(F) ≤ ℓ + w(F) =⇒ ℓ ≥ wRes(F) − w(F) =⇒ |Π| ≥ 2wRes(F)−w(F)

Analogous propositions in the dag-like setting will prove the second state-
ment of the theorem in much the same way.

def 2.15 xb := x if b = 1 and ¬x if b = 0. We employ some helpful propositions:

prop 2.8 Let F be an unsatisfiable CNF formula. Let x be a variable of F, b ∈ {0,1}. If
wRes(F ↾ x = b) ≤ k − 1 and wRes(F ↾ x = 1 − b) = k, then wRes ≤ k.

proof. Let Πb be the width-k − 1 refutation of F ↾ x = b. Let Π1−b, similarly, be the
refutation of F ↾ x = 1 − b.

We weaken x1−b into all clauses of Πb to yield a proof of x1−b of width k.

Resolve x1−b with all clauses in F to obtain F ↾ x = 1 − b. Then we use
Π1−b ↾ x = 1 − b to refute F. (See picture above). Then we yield a width k
resolution proof.

prop 2.9 If ℓ, n > 0 and Π is a tree-like refutation of F on variables x1, ..., xn such that
|Π| ≤ 2ℓ, then wRes(F) ≤ ℓ + w(F).

proof. We do double-induction on ℓ and n. Consider the base cases:

ℓ = 0 =⇒ |Π| = 1, so Π = ⊥ ∈ F.

n = 0 =⇒ F = ⊥, so 1 ≤ 0 + 1.

Let ℓ, n > 0. Let |Π| ≤ 2ℓ. Let x be the last variable resolved in this proof.
wlog let |Π1| < |Π|2 ≤ 2ℓ−1. Restrict Π1 by x = 0. Then we yield a refutation
of F ↾ x = 0 in size ≤ 2ℓ−1. By induction, we have that

wRes(F ↾ x = 0) ≤ ℓ − 1 + w(F)

19 frege systems

Similarly, restrict Π0 by x = 1 to yield a refutation of F ↾ x = 1 in size ≤ 2ℓ.
While we cannot perform induction on ℓ, we can on n, since restricting by
x = 1 is equivalent to resolving on x for all clauses. Again, then

wRes(F ↾ x = 1) ≤ ℓ − w(F)

By Prop 2.8, then we conclude wRes(F) ≤ ℓ + w(F)

III Frege Systems
Let’s take a step back and recall what resolution allowed (and didn’t allow) us to
do. We were able to work with formulas which look like

F = C1 ∧ · · · ∧ Cn

for clauses Ci , and we could weaken or resolve on variables in these clauses,
with the hope of reducing to ⊥. The proof system is hence extremely tailored to
proving refutations, but is ill-equipped to handle tautologies or deductions. In
fact, it is pretty limited in its scope for refutation: we have 2Ω(n)-size proofs of
bphpn (meh), and can only work with conjunctions of disjunctions (also meh).

How can we improve? One thought is to more rules to resolution, but in fact

Refutation + Sound Inference Rules ≡ Resolution

so this won’t work. As it turns out, resolution, though not the most powerful
proof system, can simulate all inference rules. Try this for

C, D ⊨ E =⇒ C, D ⊢ E
def 3.1An inference rule is any sound method to deduce new boolean formulas from old

ones.

def 3.2A substitution σ is a function mapping variables to formulas. It is hence a mapping
of formulas to formulas, i.e. if F is a formula, then σ (F) is the formula resulting
from applying σ to the variables of F.

def 3.3Let R be a set of finite inference rules on variables. Let G1, ..., Gm and F be
boolean formulas. An R-Frege proof of F from G1, ..., Gm is a sequence of formulas
F1, ..., Fs = F such that each Fi = Gj for some j or there is a rule A1, ..., At ⊢ B and
a substitution σ such that ∀ℓ, σ (Aℓ) = Fk : k < i and σ (B) = Fi .

def 3.4A set of inference rules is called implicationally complete if, whenever F1, ..., Fm ⊨ G,
then there is a Frege proof of G from F1, ..., Fm.

def 3.5Let U (F,Π) and V (F,Π) be propositional proof systems, i.e. for all tautologies
F there exists a proof Π such that U (F,Π) = 1 and U runs in polynomial time
(and similarly for V). We say that U p-simulates V if there is a polynomial time
algorithm f such that V (F,Π) = 1 =⇒ U (F, f (Π)) = 1. If U and V p-simulate

eachother, we sometimes
write U ≡p V

propositional proof complexity 20

3.1 Reckhow

Let R1, R2 be finite implicationally complete inference rules. Then R1-Frege
p-simulates R2-Frege.

proof.

Assume R1 and R2 have the same language (otherwise, we may translate)

A language, like {∧,∨,¬}, is a
collection of symbols which

operate on boolean formulas.
We are only concerned with

informationally complete
languages, i.e. languages

which may express any
boolean formula, and in this

event we may translate
between one and the other

without trouble.

. Let
Π = F1, ..., Fs = F be an R2-Frege proof of F. Consider any R2-Frege inference
rule, i.e. A1, ..., At ⊢ B. Then there is an R1-Frege proof of B from A1, ..., At by
completeness (Def 3.5), i.e.

A1, ..., At , B1, ..., Bℓ = B

where each Bi results from a rule of R1 under some substitution σ . Hence,
we may prove F in R1-Frege, and in particular with size O(ℓS(Π)), where Π

is the size of the proof in R2-Frege, and ℓ is the maximal length of any R1
derivation of an R2 inference rule.

def 3.6 A Frege proof is tree-like if each derived formula is used by at most one inference
rule. Equivalently, the proof graph is a tree.

Can tree-like resolution p-simulate dag-like resolution? No! The other way is
fine (any tree-like proof is a dag-like proof). However, not every dag-like proof
may be translated to a tree-like proof while maintaining polynomially-bounded
size increases. One can look to dRes(peb∆h) = Ω(h) = Ω(

√
#vars)A fact we haven’t proved, but

is good exersice
to conclude that

STreeRes(peb∆h ◦ xor) ≥ 2Ω(
√
n). But we can also show SRes(peb∆h ◦ xor) = nO(1)

def 3.7 Shoenfeld Calculus

p ∨ ¬p
excluded middle

p

p ∨ q
weakening

p ∨ (q ∨ r)
(p ∨ q) ∨ r
∨ associativity

p ∨ p
p

∨ contracting

p ∨ q ¬p ∨ r
q ∨ r

cut

Sometimes we add in and associativity and p, q ⊢ p ∧ q.

def 3.8 For a Frege proof Π = C1, ..., Cℓ, the length is the number of lines ℓ, the size is∑ℓ
i=1 |Ci |, and the depth is the max root-leaf path in a proof.

3.2

Let F be any Frege system, and let Π = C1, ..., Cℓ be any Frege proof starting
from formulas B1, ..., Bt and with size s. Then there is a tree-like Frege proof
Π′ such that the length of Π′ is O(ℓ log(ℓ)), the size is O(sℓ log(ℓ)), and the
depth is O(log(ℓ)).

proof.

21 frege systems

wlog assume the first lines C1 = B1, ..., Ct = Bt. Define Di := C1 ∧ C2 ∧ · · · ∧
Ci , bracketed as a binary tree, i.e. ((C1) ∧ (C2)) ∧ · · · ∧ ((Ci−1) ∧ (Ci)). Then
d(Di) = O(log(i)). We show how to derive Di+1 from Di . Let Ci+1 be derived
from Cj1 and Cj2 , where j1, j2 ≤ i.

Claim: Di ⊢ Di ∧ Ck for any k ≤ i in tree-like Frege.

We use the law of excluded middle to conclude

¬(Ck ∧ Di) ∨ (Ck ∧ Di) =⇒ ¬Ck ∨ ¬Di ∧ (Ck ∧ Di)

=⇒ ¬Ck ∨

 i∨
a=1

¬Ca

 ∨ (Ck ∧ Dj)

=⇒
i∨
a=1

¬Ca ∨ (Ck ∧ Di) =⇒ Ck ∧ Di

To then derive Di+1 from Di , we first derive

Di ⊢ Di ∧ Cj1 ∧ Cj2 ⊢ Di ∧ Ci+1 ≡syn Di+1

Hence, we prove D1, ..., Dℓ, and extract Cℓ from Dℓ. The size of this proof is
O(|Di+1| log(i))

There are no natural tautologies that are exponentially hard (or even conjectured
to be) for Frege to prove. These systems (we will see Extended Frege soon, which
is even stronger than Frege) can essentially formalize most standard mathematical
arguments.

How can we make Frege even stronger?

1. Use quantifiers, i.e.

A(s) ⊢ ∀y, A(y) A(B(t)) ⊢ ∃z : A(z)

We call this system G. As it turns out, tree-like, G restricted to 1 essential
quantifier is equivalent to Extended Frege.

2. We can introduce definitions! This is exaclty what Extended Frege is. We
allow, at any time, the introduction of lines (q ∨ ¬F) ∧ (¬q ∨ F), i.e. q = F,
where q is a new formal symbol.

3. Allow substitutions, i.e. from A(x) ⊢ A(B(y)), where B is another formula.
However, this is sound only for proving tautologies A. This system is
sometimes called substitution Frege.

propositional proof complexity 22

G

Extended Frege

Frege Tree-like Frege

Res

TreeRes

3.3 thmstart

Substitution Frege ≡p Extended Frege

extended frege

def 3.9 An Extended Frege proof of A from B1, ..., Bt is a sequence of formulas C1, ..., Cs =
A in which each Ci is either deduced from earlier lines by Frege rules or is an
instance of the extension rule, i.e.

Ci = (¬q ∨ F) ∧ (q ∨ ¬F)

where q is a new atom such that

1. q doesn’t appear in any of B1, ..., Bt

2. q doesn’t appear in F

3. q doesn’t appear in C1, ..., Ci−1

We adopt the notation q := F to mean the extension rule.The extension rule is akin to
"definitions"
def 3.10 The length of an Extended Frege proof Π s is the number of formulas in it. The

size is
∑s
i=1 |Ci |, where |Ci | is the number of atoms and connectives in it.In general, length and size do

not have to be related.

3.4 Pigeons in Extended Frege

phpn+1
n has polynomial-size Extended Frege proofs.In fact, the pigeonhole

principle has
polynomial-size regular

proofs, but this is an
endeavor to prove

proof.

23 frege systems

A natural approach: remark that there are n + 1 pigeons, each pigeon is
mapped to a hole, and there are n holes. The injectivity axioms will imply
that n + 1 < n, hence a contradiction. This is how the statement is proven for
regular Frege.

Now for the proof idea: suppose that p : [n + 1] → [n] is an injection. We
will use p to create a new injection q : [n]→ [n − 1]. By induction, then, we
generate an injection [2]→ [1], which one can brute-force refute. Recall the
boolean definition of phpn+1

n :

phpn+1
n (p⃗) :=

n+1∧
i=1

 n∨
j=1

pij

each pigeon is mapped

∧
∧
i,k,j

(
¬pij ∨ ¬pkj

)
no collisions

Conceptualize a truth assignment p as an injection. We define q : [n]→ [n−1]
as follows.

q(i) :=

j p(i) = j < n

p(n + 1) p(i) = n
⋆

Now, to argue that q(i) is an injection. It is clearly defined for each i by
totality of the pigeon hole principle. Suppose q is not injective, and write
q(i) = q(k) = j. We know that p(h) = j or p(h) = n for h ∈ {i, k}. If p(i) = p(k),
then we are done, so suppose p(i) = j and p(k) = n. Then p(n + 1) = j since
q(k) = j, which is a contradiction! To implement this proof in Extended Frege
is tedious, so we will sketch the proof. In particular, we’ll assume

we can use De Morgan,
distributivity or ∧ over ∨We deduce phpnn−1(q⃗) from phpn+1

n (p⃗), where we use the extension rule to
implement the arguments above. Let

qij := pij ∨ (pin ∧ pn+1,j)

for i = 1, ..., n, j = 1, ..., n − 1, as in ⋆, using the extension rule.

We need now to prove
∨n−1
j=1 qij := Q. To do so, we introduce the axiom

Q ∨ ¬Q. Then, by De Morgans, we have

Q ∨
(
¬qi1 ∧ ¬qi2 ∧ · · · ∧ ¬qi,n−1

)
and the distributive rule to find

(Q ∨ ¬qi1) ∧ (Q ∨ ¬qi2) ∧ · · · ∧ (Q ∨ ¬qi,n−1)

propositional proof complexity 24

extracting the ∧’s yields

Q ∨ ¬qij for each j = 1, ..., n − 1

Cutting this with the definition of qij yields

Q ∨ ¬
(
pij ∨ (pin ∧ pn+1,j)

)
with more De Morgan and distributivity yields

(Q ∨ ¬pij)
♣

∧ (Q ∨ ¬pin ∨ ¬pn+1,j)
♠

Cutting ♣ with
∨n
j=1 pij for each j = 1, ..., n − 1 gets us Q ∨ pin for each i. And

cutting this result with ♠ will get us Q ∨ ¬pn+1,j f orj = 1, ..., n. Cutting this
with pn+1 totality deduces Q, as desired.

The collision algorithm is deduced similarly. We repeat this argument to
deduce, inductively, php2

1

Repeated uses of the extension axioms are key to a proof like the above.

3.5 Size and Length Contraction of Extended Frege Proofs

Let A be a tautology, and suppose there is an Extended Frege proof of A
with length k. Then there exists an Extended Frege proof of A with length
O(k + |A|) and size O(k + |A|2), and in which each individual line has size
O(|A|).

proof.

Let Π = D1, ..., Dk be an Extended Frege proof of A, so in particular Dk = A.
For any formula F, we let Ext(F) be the following set of extension axioms.
Namely, for each subformula E of F, create an atom qE which represents this
subformula, and add the extension axioms:

1. E = ¬G, include qE := ¬qG

2. E = G ∧ H , include qE := qG ∧ qH

3. E = G ∨ H , include qE = qG ∨ qH

4. E = p, include qE := p

Now we argue that there is always a constant-size proof of the atom qDi from
qD1

, ..., qDi−1
and ∪j<iExt(Di). Each Di was deduced from earlier lives by a

Frege rule, deduced Di from Di1 , ..., Dic . Unpacking Di1 , ..., Dic , we can derive
qDi in O(1) steps by applying the Frege rule.

25 frege systems

Therefore, we can derive qA in O(k) steps, by simulating Π and paying a
constant factor. Then, by exactly O(|A|) uses of cut with the extension axioms
in Ext(A), we can derive A from qA in O(|A|) steps. Each line will require at
most O(|A|) symbols, so we observe a final proof size of O(k + |A|2) and length
O(k + |A|).

Line count characterizes the complexity of Extended Frege proofs. In fact, one
can show

LEF(F) = Θ(LF(F))

We consider a restriction on Extended Frege and hearken back to the past chapter:

def 3.11Given a clause C = ℓ1 ∨ · · · ∨ ℓk , an atom q, the extension rule q := C is given by

¬q ∨ ℓ1 ∨ · · · ∨ ℓk and q ∨ ¬ℓ1, q ∨ ¬ℓ2, ..., q ∨ ¬ℓk

def 3.12An Extended Resolution refutation of an unsatisfiable CNF F = C1 ∧ · · · ∧ Cm is a
sequence of the form D1, ..., Dℓ = ⊥, where each Di is deduced from earlier lines
by resolution or weakening; or is a clause from F; or is an instance of q := C as
above.

3.6 ER ≥p EF

Extended Resolution p-simulates Extended Frege.

def 3.13A De Morgan formula is a formula where all negations are immediately above the
leaves. The nomenclature comes from the fact that, using De Morgan’s law, we
may transform any formula F into a De Morgan formula F′ where F ≡ F′ and
|F′ | = O(|F|).

def 3.14If F is a De Morgan formula, the alternation depth of F is the maximum number of
alternations of ∧ and ∨ on any root-leaf path in F.

def 3.15A depth d Frege proof

Not to be confused with the
definition of depth for a
Frege proof, c.f. Def 3.8

is one in which all lines have alternation depth at least d.

def 3.16We denote by Freged the Frege system restricted to depth−d proofs.

prop 3.1Resolution ≡p Frege1 and Frege ≡ FregeO(log(n))

In the space between 1 and O(log(n)), we do have meaningful lower bounds: as
recently as 2024, we know that there exist super-polynomial lower bounds on
CNFs in FregeO

(
log(n)

log(log(n))

)
Is Fregei stronger than Fregei−1? We don’t know! We cannot even differentiate
between Frege2 and FregeO(1)

def 3.17A k-DNF formula is one of the form∨
i

∧
j

ℓij

propositional proof complexity 26

where each
∧
j has at most k literals.

def 3.18 A Res(k) refutation of a CNF F = C1 ∧ · · · ∧ Cm is a sequence of k-DNF formulas
D1, ..., Ds = ⊥ such that each Di is either a clause from F or it is deduced by one
of the following

A ∨
∧j
i=1 ℓi B ∨ ¬ℓ1 ∨ ¬ℓ2 ∨ · · · ∨ ¬ℓj

A ∨ B
cut rule

A
A ∨ ℓi

weakening

A ∨ ℓ1 A ∨ ℓ2 · · · A ∨ ℓj
A ∨ (

∧j
i=1 ℓi)

and creation

A ∨
∧j
i=1 ℓi

A ∨ ℓ1 A ∨ ℓ1 · · · A ∨ ℓj
and extraction

27 frege systems

prop 3.2Frege2 = Res(# of vars) = Res(n) We update our proof strength graph:

EF SF

Frege = FregeO(log(n))

FregeO(log(n)
log(log(n)))

Frege2 = Res(n)

Res(O(log(n))

Res(O(1))

Res(2)

Res = Res(1) = Frege(1)

TreeRes

super-polynomial PFP boundsp

Res-style lower boundingp

We may go even further if we’d like, but proof systems stronger than EF are hard
to grab onto, and are eventually just logician’s playthings. The punchline: very
strong proof systems cannot escape first-order logic and set theory. If we believe
NP , coNP, then we must believe that there is a family of CNF formulas that
require long proofs in ZFC (i.e. an arbitrarily strong proof system)

peano arithmetic

def 3.19Peano arithmetic We may say "PA"captures reasoning about natural numbers. It is a first-order
logical theory. It is defined with the symbols L = {0, S(·),+,×}, where S(·) is a
function which takes n 7→ n + 1. The axioms are, in short,

A1 {0, S(·),+,×} all behave as we expect under the ring N(+,×).

A2 Induction: for all formulas ϕ,

[ϕ(0) ∧ ∀x : ϕ(x)→ ϕ(s(x))]→ ∀x, ϕ(x)

propositional proof complexity 28

It turns out the PA is extremely powerful, and can formalize practically all theo-
rems we know today.

Can we formalize reasoning about polynomial-time computation? In other words,
is there a theory T s.t. T proves the existence of all and only the functions which
are computable by polynomial-time algorithms. We discuss two such theories:
PV ("polynomially verifiable")Cook, circa 1970 and S2

1
Buss, circa 1980

, which is a subset of PA.

Before we continue, we introduce |x| := ⌊log2(x)⌋, where x ∈ N. (This is the
"length" of x, in the sense of how many bits you need to represent it). We also
have x#y := 2|x||y| (Reads: x smash y).

def 3.20 The language of S2
1 is given by LS2

1
= L ∪ {| · |,#}, with the axioms A1∪ "a special

induction," to be defined soon.

First, for some intuition. If ϕ(x, y) is a sentence, where ∀x ∃y : ϕ(x, y) holds, how
can we witness the truth of this by an algorithm? Suppose we had an algorithm
A which always halts s.t., given x, ϕ(x, A(x)) is true. An exceptionally dumb
algorithm:
Require: x
for y = 0, ... do

check ϕ(x, y)
if ϕ(x, y) true then

output y
If, indeed, ∀x ∃y : ϕ(x, y) holds, then this algorithm will work. But it is not
polynomial. We can make it so by restricting y = O(xO(1)), then we will do
polynomial-time checks. And the checking operation itself must be polynomial-
time.

def 3.21 A formula ϕ over LS2
1

is Σb1 if

ϕ(x) := ∃y ≤ t(x) : ψ(x, y)

where ψ(x, y) is "sharply bounded," i.e. every quantifier ∀z ≤ |x| or ∃z ≤ |x| in ψ
is bounded by the length of x or y.

We return now to Def 3.20, and define "special induction" to be the induction
principle only on Σb1 formulas.

3.7

If S1
2 ⊢ ∀x∃y ≤ t(x) : ϕ(x, y), where ϕ is sharply bounded, then there is a

polynomial-time algorithm A s.t. ∀ xϕ(x, A(x)) holds.

Convsely, we have

29 frege systems

3.8

If A is a polynomial-time algorithm, then there is a term t s.t. S2
1 ⊢ ∀x∃y ≤

t(x)

This establishes a correspondence between polynomial-computable algorithms
and provably total formulas in S1

2 . If S1
2 ⊢ ∀x∀y ≤ t(x)ψ(x, y), we consider

the "propositionalized translation," typically denoted ||ψ||n. Then EF ⊢ ||ψ||n
efficiently.

def 3.22Let x1, ..., xn ∈ {0,1} be propositional variables. A boolean circuit over these
variables is a sequence

g1, ..., gs

where each gi ∈ {xi , 0, 1} or gi = gj ∧ gk or gi = gj ∨ gk or gi = ¬gj , where j, k < i.

For each of the symbols +,×, S, | · |,#, there is an O(n2)-size boolean circuit which
computes them on n-bit inputs.

propositional proof complexity 30

IV Cutting Planes
rank & depth lower bounds

def 4.1 Denote by dCP(F) the minimal depth of a cutting planes proof of F, i.e.

min
Π proves F

d(Π)

prop 4.1 Depth lower bounds can generate size upper bounds:

dCP(F) ≤ d =⇒ tree-like CP size ≤ 2d

def 4.2 A polytope P is called rational if its defining inequalities are ratio, i.e. ax ≤ δ : a ∈
Zn, δ ∈ Q.

def 4.3 The integer hull PI of a polytope P is the convex hull of P ∩ Zn.

def 4.4 An inequality ax ≤ d is valid for P if it holds for all x ∈ P .

def 4.5 Let P ⊆ Rn be a rational polytope. The Chvátal closure of P , denoted P ′, and
sometimes called the closure, is obtained by removing all points x ∈ P s.t. there is
an inequality ay ≤ d + 1, a ∈ Zn, d ∈ Z that is valid for P , but ax > d.

def 4.6 a ∈ Zn, δ ∈ Q, ax ≤ δ is good if it is valid for P and a’s coordinates are relatively
prime. Then the closure may be given by

P ′ = {x ∈ Rn : ax ≤ ⌊δ⌋ : ay ≤ δ is good}

Note that P ′ contains all integral points in P ∩ Zn, so PI ⊆ P ′. Note also that
P ′ doesn’t necessarily remove all rational points. Lastly, P ′ is possibly not a
polytope.

4.1 Chvátal, Shrijver

For every rational polytope P , P ′ is a rational polytope. Furthermore, ∃r ∈ N
such that P (r) = PI = the convex hull of P ∩Zn, where P (r) denotes the closure
of P performed r times.

def 4.7 The Chvátal rank of P , rank(P), is the minimal r that satisfies Thm 4.1.

prop 4.2 rank(F) ≤ dCP(F)

proof. Let Π be a CP proof of F. Let PΠ be the intersection of all inequalities
appearing in Π. If d(Π) = d, then P (r) ⊆ PΠ

31 algebraic systems

prop 4.3

(protection lemma)
If x ∈ {0,1, 1

2 }
n, y is a neighbor of x if it can be obtained by switching one 1

2
to {0,1}. Then N (x) = {y : y neighbor of x}. For any rational polytope P and
x ∈ {0, 1, 1

2 }
n,

N (x) ⊆ P =⇒ x ∈ P ′

proof.Let Ix be the set of indices i ∈ [n] such that xi = 1
2 . Let xi←a denote taking x

and setting xi := a. Suppose for contradiction that x < P ′. Let a ∈ Zn, d ∈ Z
be such that ay < d + 1 is valid for P but ax > d. Then ax < Z.

4.2

For any n ≥ 4, rank(On) = Ω(n)

V Algebraic Systems
nullstellensatz

Cutting planes is often called "semi-algebraic," since we deal with inequalities
over R. In algebraic proof systems, we deal with equalities over an arbitrary field
F. (Recall some rudimentary algebra. In F2, a + b = a xor b and a · b = a and b.)
Question: can resolution "reason" about theorems involving counting mod 2?
Recall

STreeRes(F ◦ xor2) ≥ 2dRes(F)

So, definitely, TreeRes is no good for this purpose. Neither is Res, after all:

SRes(F ◦ xor2) ≥ 2Ω(wRes(F))

Consider a translation of a CNF F into mod 2 equation form:

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∨ x3

(1 − x1) = 0 x1(1 − x2) = 0 x2(1 − x3) = 0 x3 = 0

Generally speaking, we translate a clause as follows:

C =
∨

xi ∨
∨

yi ↔ C̃ :=
∏
i

(1 − xi)
∏
j

yj = 0 x2
i = xi and y2

i = yi

Hence, for F = C1 ∧ · · · ∧ Cm on n variables {xi}, F̃ is the system

C̃1 = 0 · · · C̃m = 0 : x2
i = xi ∀i ∈ [n]

propositional proof complexity 32

We then refute this system via polynomial manipulation (F2[x], for now) for the
purpose of yielding 0 = 1.

def 5.1 A Nullstellensatz refutation
(NUL-STEL-IN-STAZ)

of F = C1 ∧ · · · ∧ Cm on n variables xi is a sequence of
polynomials p1, ..., pm and r1, ..., rn such that

⋆
m∑
i=1

C̃ipi +
n∑
j=1

(x2
i − xi)ri = 1

Clearly, this is sound, since, if F(x⃗) = 1, then C̃i(x) = 0 ∀i, and x2
j = xj ∀j, so

0 = 1.

def 5.2 The size of a Nullstellensatz proof is the total number of monomials in ⋆, after
expanding all products, and before cancellations. The degree of the proof (anal-
ogous to width) is the maximum degree of any monomial that is produced by
expanding ⋆.

For example, consider again F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∨ x3. We have

(1 − x3)(1 − x2) (1 − x1)

C̃1

+x1(1 − x3) (1 − x2)

C̃2

+ x̃3

C̃4

+ x2(1 − x3)

C̃3

= 1

Where all non-clause polynomial factors are labeled p1, p2. But this should be 0
as well, so we have a proof.

5.1 Nullstellensatz is Complete for CNF Refutations

proof.

Let F = C1 ∧ · · · ∧ Cm be on n variables xi : i ∈ [n]. Assume F is unsatisfiable.
As we’ve done before in completeness proofs, we’ll do some sort of "try every
assignment" to conjure up a Nullstellensatz proof. Recall that an assignment
is y ∈ {0, 1}n.

Given an assignment y of bits y(xi) : i ∈ [n], we can generate a polynomial
associated with it. For instance, 01 will translate to (1 − x1)x2 = 1 =⇒
(1 − x1)x2 − 1 = 0. Define

Iy (⃗i) =
∏

i:y(xi)=0

(1 − xi)
∏

i:y(xi)=1

xi

Then Iy(x⃗) = 1 ⇐⇒ x⃗ = y. Then∑
y∈{0,1}n

Iy(x⃗) = 1

since, for all x⃗ ∈ {0, 1}n, exactly one indicator Iy(x⃗) equals 1 for y ∈ {0, 1}n.

33 algebraic systems

We claim that each Iy can be factored as py C̃i for some polynomial p and
clause Ci . Formally, let Ci be chosen so that if Ci(y) = 0, then C̃i(y) = 1. Then
all terms in C̃i must be in Iy , and so py is the product of the remaining terms.

def 5.3Let G = (V , E) be a connected graph. A labelling σ : V → {0,1} is called odd if∑
v∈V σ (v) = 1 mod 2. Consider the system∑

e∋v
xe = σ (v) mod 2 ∀v ∈ V

These are called the Tseitin graph formulas. They are clearly unsatisfiable by the
handshaking lemma. (See example).

1 0

0

e1 e2

e3

xe1
+ xe3

= 1 (xe1
∨ xe3

) ∧ (xe1
∨ xe3

)

xe1
+ xe2

= 0 (xe1
∨ xe2

) ∧ (xe1
∨ xe2

)

xe2
+ xe3

= 0 (xe2
∨ xe3

) ∧ (xe2
∨ xe3

)

tseiG,σ is the CNF encoding of the system of Tseitin graph formulas associated
with a vertex mapping σ , where, for each equation

∑
e∋v xe = 1, we write it as a

CNF (in a brute-force way), and and it with the rest.

5.2

For any graph G and an odd mapping σ , tseiG,σ has Nullstellensatz refuta-
tions of small size and degree.

proof.

Recall that we search for polynomials pi and qi such that

m∑
i=1

C̃ipi +
n∑
j=1

qi(x
2
i − xi) = 1

where C̃i is the Nullstellensatz encoding of clauses Ci ∈ tseiG,σ . Observe
that

∑
v
∑
e∋v xe − σ (v) = 1 is a suitable example, if it fits in the form above.

As an example, consider first (xe1
∨ xe3

) ∧ (xe1
∨ xe3

). We can derive then the

propositional proof complexity 34

polynomials (1 − xe1
)(1 − xe3

) = 0 and xe1
xe3

= 0. Summing these, then, we
yield xe1

+ xe3
= 1, as desired.

Claim: If
∑
e∋v xe − σ (v) is an underlying equation for Tseitin, and Fv is the

corresponding CNF representation, then∑
C∈Fv

C̃ =
∑
e∋v

xe − σ (v)

Therefore, the refutation is

m∑
i=1

C̃i =
∑
v∈V

∑
C∈Fv

C̃

=
∑
v∈V

∑
e∋v

xe − σ (v) =
∑
v∈V

σ (v) = 1

We remark that Tseitin requires exponential-size refutations, even in systems as
strong as bounded-depth Frege. They are easy for Frege, but in fact Frege ≥p
Nullstellensatz.

Recall now the pebbling formulas on depth d pyramids, peb∆d . Nullstellensatz
requires degree ≥ d refutations. To prove this and other degree lower bounds, we
use d-design.

def 5.4 A d-Design is a linear function on polynomials satisfying

1. D(1) = 1

2. D(qC̃i) = 0 : deg(qC̃) ≤ d

3. D(q(x2
j − xj)) = 0 ∀q, xj . Hence, D(qx2

j) = D(qxj) by linearity.

If x ∈ {0, 1}n, define Evalx(p) := p(x) for any polynomial p. Observe that Evalx is
linear and a d-Design.

Recall the pebbling formulas:

xr → xr = 0 xℓ → (1 − xℓ) = 0 xu ∨ xv ∨ xw → xuxv(1 − xw) = 0

where xr is the root, xℓ is a leaf, and w is the child of u and v (working from leaf
to root). Define xs :=

∏
i∈S xi . Then

D(xSxr) = D(xS(1 − xℓ)) = D(xSxuxv(1 − xw)) = 0

For any d-Design. We can then deduce that

D(xS) = D(xSxℓ) D(x�) = 1 = D(xℓ) if S = �

35 algebraic systems

And also
D(xSxuxv) = D(xSxuxvxw)

def 5.5The Reversible Pebbling Game is as follows: we play on a dag G with a unique sink
node r. We place pebbles on nodes of G, with the goal of placing a pebbling on r,
subject to the following rules:

1. We can always place or remove a pebble from the source node (for free)

2. If any node u has its predecessors pebbled, then we can place or remove a
pebble on u.

We think of D as assigning 0/1 values to sets of pebbled nodes. Note:

1. Any S : r ∈ S has D(xS) = 0

2. If S, T are reachable by a single move, then D(xS) = D(xT).

3. D(�) = 1.

5.3 Pebbling in Nullstellensatz

Let rpeb(G) be the minimum number of pebbles required to win the game
on G. Then there is a

(rpeb(G) − 1) − design

for pebG.

proof.

If S ⊆ V (G), |S | ≤ rpeb(G) − 1, define

D(xS) =

1 if we can place pebbles on exactly the vertices in S,
starting from � and using ≤ rpeb(G) − 1 pebbles

0 o.w.

We check the axioms:

1. D(1) = D(x�) = 1

2. D(xℓ) = 1

3. D(xS) = D(xSxℓ) so long as |S ∪ ℓ| ≤ rpeb(G) − 1 (the same holds for
D(xSxuxv) = D(xSxuxvxw))

4. D(xSxr) = 0

prop 5.1rpeb(∆h) ≥ h.

proof.

propositional proof complexity 36

Let t be the first time in which every root to leaf path has a pebble on it. Then
there are ≥ h pebbles placed. Then, the last pebble was placed on a leaf, and
every other path must be blocked at time t − 1.

prop 5.2 As a corollary, any Nullstellensatz proof of peb∆h requires degree rpeb(∆h) ≥ h.

	[1.25em][l]I Introduction
	Motivations
	Propositional Logic Definitions

	[1.25em][l]II Resolution
	Pigeonhole Principle

	[1.25em][l]III Frege Systems
	Extended Frege
	Peano Arithmetic

	[1.25em][l]IV Cutting Planes
	Rank & Depth Lower Bounds

	[1.25em][l]V Algebraic Systems
	Nullstellensatz

